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Abstract- The subjects of this paper are the hydrodynamics and heating by condensation of a free falling 
liquid jet. The considerations are based on conservation laws. The equations of continuity, momentum, 
and energy are integrated numerically, leading to distributions of velocity and temperature in the jet. It is 
shown that the velocity field in the jet is mainly influenced by the action of gravity. The jet shape obtained 
numerically depends, among others, on the surface tension and can be well described by a relation derived 
from a simplified momentum equation. The temperature distribution in the jet is similar to that in 
developing flows, It depends mainly on Reynolds and Prandtl numbers. On the basis of numerical results, 
a correlation for the mean jet temperature is recommended. This correlation describes experimental data 

from the literature satisfactorily. 

1. INTRODUCTION 

Liquid jets have attracted the attention of natural 
scientists for centuries. First observations were made 
on natural jets like waterfalls and geysers. Inves- 
tigations on artificially produced liquid jets were 
undertaken, among others, by Venturi [1], Bidone [2] 
and Savart [3] during the first half of the nineteenth 
century. At that time, the main interest was focused 
on the shape and on the break up of  liquid jets dis- 
charging from orifices of  different cross-sections. 
Major contributions to a tentative finish of such inves- 
tigations are due to Magnus [4], who published exten- 
sive observations on liquid jets of different shapes. 

First studies of jet stability were apparently under- 
taken by Plateau [5], whose principal interest targeted 
the stability of liquid cylinders with a special regard 
to surface tension. The effect of gravity hereby was 
suppressed by producing a cylinder of  olive oil within 
an alcohol-water mixture of equal density. Plateau 
observed that the oil cylinder becomes instable and 
breaks up into drops if the length of the cylinder 
exceeds its circumference. 

Theoretical considerations concerning the stability 
of inertial and viscous liquid jets discharging down- 
ward into a vacuum were for the first time presented 
by Rayleigh. His considerations were later on com- 
pleted by Bohr and Tomotika so far as the jet environ- 
ment was also considered as inert and viscous. As far 
as their results and the results of numerous further 
publications on jet stability are concerned, the reader 
may be referred to an extensive review prepared by 
McCarthy and Molloy [6]. 

The analytical description of jet shapes using poten- 
tial flows dates back to Kirchhoff [7]. He neglected 
external forces and assumed the pressure at the jet 

surface to be constant. These assumptions led him to 
analytical equations for the shape of two-dimensional 
(2D) jets. 

Despite numerous investigations on jet dynamics, 
the flow fields in free falling liquid jets have not been 
described analytically on the basis of physical models. 
It is still necessary to integrate hydrodynamic equa- 
tions numerically, taking into account complex 
boundary conditions, and (in the case of a com- 
prehensive analysis) the influence of the surface 
tension. The same also applies to the heating or 
cooling of liquid jets. 

2, THE NATURE OF THE PROBLEM 

The motivation for this paper originated in con- 
nection with vapour condensation on horizontal 
tubes, which are arranged in a vertical row. In such a 
tube arrangement, liquid jets are formed between the 
tubes within a certain range of parameters. The aver- 
age temperature of the jet leaving the tube is lower 
than the saturation temperature. Therefore, vapour 
condensation takes place not only at the tube but also 
at the jet surface, decreasing the condensate sub- 
cooling. If this subcooling becomes almost completely 
suppressed, the jet nearly reaches the saturation tem- 
perature when reaching the lower tube. In this case, 
particularly in the upper region of this tube, the heat 
transfer takes place without or only with a weak 
vapour condensation. The condensate hereby is 
cooled and at the circumference of the tube an increas- 
ing thermal boundary layer is formed. The con- 
densation starts after the thermal boundary layer has 
reached the phase interface. These effects influence the 
condensation process generally and should be con- 
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a thermal diffusivity 
d jet diameter 
Fr Froude number, u~/(ydo) 
y gravitational acceleration 
Gz Graetz number, Re Pr do/x 
Ah enthalpy of condensation 
J0 Bessel function 
.4;/ mass flow rate 
Nu Nusselt number, c~do/2 
p pressure 
Ap~ Laplace pressure 
Pr Prandtl number, via 
r radial coordinate (~ = r/rs) 
r', r" derivations of r with respect to x 
Re Reynolds number, uodo/v 
u velocity of the jet (n = u/uo) 
v radial velocity (g = V/Uo) 
We Weber number, a/(douZp) 
x axial coordinate (2 = x/ro). 

NOMENCLATURE 

Greek symbols 
:~ heat transfer coefficient 
/~, roots of the Bessel function 
6 thickness of the condensate film 
q dynamic viscosity 
8 temperature 
0 nondimensional temperature 
2 thermal conductivity 
v kinematic viscosity 
p density 
rr surface tension 
q/ contraction number. 

Subscripts 
m average 
0 initial 
s at phase interface 
v vapour 
w at wall. 

sidered for a deeper understanding of heat transfer 
with vapour condensation on horizontal tubes. 

The flow within a condensate jet leaving a hori- 
zontal tube is three-dimensional and exposed to com- 
plex effects caused by surface tension, particularly in 
the upper region where the tube is still of considerable 
influence. A velocity maximum has to be expected at 
the jet surface as is schematically shown in Fig. 1. At 
the origin (x = 0) of the jet, the velocity of the jet axis 
is zero. The axial velocity of the jet increases with the 
vertical distance from the tube so that the velocity 
profile in the jet cross-section becomes increasingly 
flat. Similar conditions can also be found for the tem- 
perature profile within the jet. In the cross-section at 

I,~ Liquid I ~"~ ~ l  

as'" /x>O 
Vopour q 

as / "  
Ig 

as-aw  .ul I 
Fig. 1. Schematics of velocity and temperature distributions 

in a condensate jet leaving a horizontal tube. 

x = 0, the jet axis has the wall temperature 8,.,, and the 
mean temperature of the condensate is lower than the 
saturation temperature. Due to permanent con- 
densation at the jet surface, the temperature of the 
condensate increases with increasing jet length. 

In fact, the flow and temperature fields in the initial 
region of the jet are very complex. Therefore, they are 
simplified in order to allow the investigations, the 
results of which will be reported in this paper. As 
shown in Fig. 2, the jet is considered to be of circular 
cross-section all along the x-axis : further, a constant 
temperature 80, and a homogeneous initial velocity u0 
are assumed in its origin (x = 0). The liquid jet is 
surrounded by saturated vapour of temperature 

i -  

Vapour 
as 

do--- 2r o 

uo,°ol 1 

• -~ (r.x) 

u(r,x) 

Fig. 2. Physical model. 
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0s > 00. Vapour and liquid are two phases of the same 
substance. The jet surface is at saturation temperature 
and a shear stress is acting at the interface. According 
to the Eulerian view, the jet flow is steady, axisym- 
metric, and laminar. The same assumptions are 
applied to the temperature within the jet. 

In this paper, the flow field, the shape of the jet, and 
the liquid temperature are determined by solving the 
conservation equations numerically. Besides, the sim- 
plified momentum equation is integrated analytically, 
giving an equation for the jet shape, and a relation for 
the mean jet temperature, based on numerical results, 
is recommended. 

3. STATE OF THE ART 

3.1. Fluid dynamics and jet shape 
Experimental studies on the jet shape proved that 

the radius of gravity driven liquid jets issuing from 
vertical tubes first increases and then decreases [8]. 
This phenomenon was explained by a redistribution 
of stresses in the liquid that starts immediately after 
the jet leaves the tube. Such a behavior of liquid jets 
could be confirmed by Duda and Vrentas [9] by 
numerical integration of the governing equations. 
Additionally, the authors found out that a higher sur- 
face tension corresponds to a larger jet radius. In 
reference to these results, it was concluded that the 
surface tension causes a resistance to the jet flow. 

At nearly the same time, the jet flow was inves- 
tigated by Lienhard [10]. As did Duda and Vrentas, 
Lienhard assumed a Poiseuille velocity profile in the 
initial segment of the jet. However, his numerical cal- 
culations were restricted to a range of parameters that 
justifies the neglect of the surface tension. 

Scheuermann [11] seems to be the first to consider 
the influence of surface tension upon the jet shape. 
Starting from an energy equation applied to a non- 
viscous jet, he derived the following relationship 
between the jet length x and the jet radius rs : 

ug ((r°~4 ) 2ff ( rO ) 
x = ~ \ \ ~ j - 1  +--rogp ~ - 1  . (1) 

Here g is the gravitational acceleration, cr is the surface 
tension, and p is the liquid density. The meaning of 
the geometric variables x, ro and r~ may be taken from 
Fig. 2. 

If the surface tension tr in equation (1) is set zero, an 
equation, already noted by Weisbach in 1855, follows : 

u 2 ( ( r ° y - - l ) .  (2) x=~\\rs/  

For the purpose of a comparison with further equa- 
tions considered belo~v, equation (1) is written non- 
dimensionally : 

1 x +4We - ( 1  +4We) (3) 
Fr r o 

by using the Froude number Fr, the contraction num- 
ber ~O, and the Weber number We given by 

u~ 
Fr = ~00' (4) 

0 rs (5) 
r0 

ff 
We - . (6) 

do.~op 
Jet equations similar to equation (3) were later re- 
commended by several authors. These equations were 
summarized in a paper published by Adachi et al. [12] 
and can be written as 

1 x - ( ~ + n W e ~ ) - ( m + n W e ) .  (7) 
Fr ro 

The values of the coefficients m and n are" 

m = 1, n = 0 (Scriven and Pigford, 1959), 

m = 1, n = 8 (Kurabayashi, 1968), 

m = 16/9, n = 0 (Lienhard, 1968), 

m = 1, n = 4 (Anno, 1977). 

The coefficients (m = l, n = 4) given by Anno in 1977 
and by Scheuermann [11] in 1919 are identical, 
whereas Scriven and Pigford use the Weisbach equa- 
tion (2) to determine the local jet radius. 

For  the jet shape, Adachi et al. [12] recommended 
the equation 

1 x 1 
- - m  

Fr ro 0 4 

24 ~"=~( l_n) ,  (8) 
+(2We+((2We)e+ R~Frr] ] \ ~  

which, contrary to the former equations, contains the 
Reynolds number Re: 

uodo Re = (9) 
v 

and therefore takes into account the liquid viscosity. 
The coefficients m and n in equation (8) were 

determined from experiments. It is to be noted that 
equation (8) becomes identical to equation (3), if 
the Reynolds number assumes very large values 
(Re ~ ~). 

3.2. Heat transfer 
The heating of liquid jets was the subject of several 

investigations [13-30]. Kutateladze [13] seems to be 
the first to deal with this problem theoretically. He 
assumed the jet velocity to be invariable with respect 
to the radial position and used equation (2) to cal- 
culate the jet radius. By making some further sim- 
plifications, Kutateladze solved the energy equation 
by separating the variables and obtained the average 
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temperature 8,1 in a jet cross-section in the case of a 
laminar flow as 

( 4:0 ) 8~-~a0 ,=t fl~exp - f l 2 R e P r  + S  (10) 

where fl, are roots of the Bessel functions J0(fli) = 0, 
Re is the Reynolds number given by equation (9), Pr 
is the Prandtl number and S is the sum of the residual 
terms of the infinite series. The ratio x/do represents 
the jet length divided by the initial jet diameter, 80 is 
the initial temperature (x = 0) and O~ is the tem- 
perature of the jet surface. 

For  the sum S, Isachenko et al. [18] proposed the 
relation 

4, 4:0 ) 
rc f17 exp Re Pr 

4 (R---~PrPrX\': Z )  erfc(]37( 4 ~ ' c  

+ ]~ exp Re Pr ' 

which contains the complementary error function 
erfc (x) = 1 - e r f ( x ) .  The error function can be cal- 
culated by [31] 

erf(x) ~ x / ~ - e x p  ( -  1,26x2), (12) 

if an engineering accuracy is required. 
In connection with the question raised by Dement- 

yeva and Makarov [24] concerning the convective part 
of the heat flux towards the jet axis in Kutateladze's 
considerations, the results of Kutateladze [13] have 
been recently discussed by Hoang and Seban [25]. 

Hasson et al. [17] investigated the heating of the jet 
in a similar way to Kutateladze and they suggested 
an equation for the average jet temperature which 
corresponds to equation (10). Parts of these con- 
siderations were recently reviewed by Celata et al. 
[28]. An analysis presented by Jacobs and Nadig [30] 
allowed the derivation of an equation for the heat 
transfer which corresponds to the usual penetration 
relations. 

In some publications, the jet heating is examined 
by simultaneous numerical integration of differential 
equations. Murty and Sastry [20] assumed dis- 
tributions for velocity and temperature in the jet cross- 
section, a fact which significantly restricts the results 
obtained. Mochalova et al. [21, 23] treated the equa- 
tions of conservation in differential form numerically. 
Besides the Reynolds and the Prandtl number, these 
authors include the Weber number in their con- 
siderations, and therefore the influence of the surface 
tension on the heat transfer in the jet. 

In most cases, experimental research concerning jet 
heating due to vapour condensation was carried out 
on liquid jets issuing out of tubes [15-19, 24, 27, 28]. 
In these cases, especially near the orifice of the tube, 
heat transfer conditions are significantly different 

compared with those prevailing on jets formed by 
condensation on horizontal tubes. At present, a paper 
by Kutateladze et al. [26] seems to be the only one 
which deals with the heating of condensate jets formed 
between horizontal tubes. The results presented in 
their paper show a considerably stronger decrease of 
the condensate subcooling compared with the heating 
of a jet discharged from an orifice. 

4. PHYSICAL MODEL AND MATHEMATICAL 
FORMULATION 

Heat transfer in a laminar, axisymmetric, and steady 
jet flow. as shown in Fig. 2, is described by the fol- 
lowing equations : 

the equation of continuity : 

8 
v - ( r v ) +  (ru) = 0 (13) 
ur ~X 

the equations of momentum in radial and axial direc- 
tions : 

8v c~v 1 3p {8ev 1 8v v O:v\  , , ~ + , , ~ -  - + ~ -  ." par + ~U~ -~ + r a~ r2 J 

~u 0u 

(]4) 

I 8p (a2u 1 8u 82u~ 

+ 7 ~  ,?.,_2 ) 
+ - -  

p 8x " , - 

and the equation of energy : 

30 O~ (828 188  ~ t  , - - + u - - = a  ~ - - +  . 
3r ~x ~?~r- + r ~r ¢?x-/ 

(15) 

(16) 

In these equations, v and u denote the radial and 
the axial velocity components, p the pressure, g the 
gravitational acceleration, p the density, v the kin- 
ematic viscosity, ,9 the temperature, and a the thermal 
diffusivity of the jet liquid. 

4. I . Simplifications and boundary conditions 
For the sake of simplicity, the terms in equation 

(14) are considered to be small compared with those 
in equation (15). Therefore, equation (14) can be 
omitted. If the derivation 02u/3x 2 in equation (15) is 
omitted too, equations (13) and (15) simplify to the 
well-known boundary layer equations. Finally, the 
system of equations (13) and (15), each applied to 
both liquid and vapour phase, and equation (16) have 
to be solved. 

The boundary conditions are enunciated as follows : 

Jet origin : 

x = 0 , 0 ~ < r ~ < r  0: u = u 0 , v = 0 , , 9 = S o  
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Jetaxis :  

r = 0 ,  x > 0 :  

Je t su r~ce :  

r = r ~ , x ~ O :  

Condensing steam : 

au Ov O, O0 7-  = 0 , ~  0,v 0 
o r  = = ~ T r  ~ 

O = Os, q Idu~/Or] = q~ [Ou~/&l 

p = p, +Ap 

x = 0 ,  r > r  0: uv =Uv0, Vv = 0  

x > 0, r -+ oo : uv = vv = 0 .  

The conditions on the jet surface allow a pressure 
jump Ap over the interface from vapour to liquid. 
This pressure jump can be obtained from a radial 
momentum balance on an element of the jet surface, 
the radial velocity of which being neglected, as 

Ap = p - pv = Ap ,  + pvv 2. (17) 

In equation (17), Apo is the Laplace pressure, Pv is the 
density and Vv is the velocity of the vapour near the 
jet surface. 

The velocity Vv of the vapour can be obtained by 
means of an enthalpy balance at the phase interface 
as 

v~ - p~-Ah ~r s' (18) 

where Ah is the enthalpy of condensation, 2 is the 
thermal conductivity, and (O0/Or)~ denotes the liquid 
side temperature derivation at the interface. 

The Laplace pressure Ap~ is given by 

Ap = 2  o a ( l  1 ) ,  
rm = ~ - ~ (19) 

where r2 and rl are the main radii of curvature of the 
jet surface. The following applies in accordance with 
Fig. 3 for the radii r~ and r2 : 

× 
Fig. 3. Main radii of jet curvature. 

and 

1 

d2rs 

1 dx  2 r~ 

r, / [drs'~2"~ 3/2 (1 + r~'2) 3'z 

cos q~ 1 1 

(20) 

r 2 r~. r~ .  ( I + ~ Z  ) [dr~2"~ 1'2 ) r~(l + r~'2) t'2" 

(21) 

Considering these relations, equation (19) can be writ- 
ten as 

o r~r~ . (22) 
A P . = r . , ( l + r [ 2 )  ~:2 l - l + r ( 2 /  

From equations (17), (18) and (22), the liquid side 
pressure p becomes 

p = p , . + A p  = P v +  r~(l+rs2)l/2 1 l + r ( 2 )  

,i: (&gy 
+ ~ F f (23) 

The pressure Pv in the vapour changes along the jet 
due to vapour flow and gravitational acceleration g. 

4.2. Numer i ca l  procedures  

The system of differential equations (13), (15) and 
(16) was solved numerically using a finite difference 
scheme. A grid was applied with a radial distance 
between the node points of 3 x 10 -5 m and an axial 
distance of 6 x 10 5 m. The algebraic formulation of 
the differential equations is similar to that described 
by Marsal [32] for the calculation of laminar 
boundary layers. The result is a set of  linear algebraic 
equations to be solved at each axial step. However, 
near x = 0, a non-linear algebraic set of equations had 
to be solved iteratively. 

In order to simplify equation (23) and, conse- 
quently, the momentum equation (15), the curvature 
radius r~ was assumed to be much larger than the jet 
radius r~, the pressure at the jet surface due to radial 
vapour flow was neglected, and the physical properties 
were regarded as constant. 

The uncertainty in the derivations due to dis- 
cretization in the worst case is proportional to the 
product between the second derivation of the axial 
velocity u with respect to x and the axial grid width. 
The maximum error occurs at the origin of the jet, 
since the algebraic equations downstream exclusively 
contain terms of higher accuracy. The numerical error 
for example in the derivation Ou/dx in the case of 
do = 3 mm and u0 = 0.2m s - '  does not exceed 0.4% 
at the jet origin. Because the numerical algorithm is 
stable, this initial error is smoothed downstream. 

In numerical processing of the hydrodynamic equa- 
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tions calculating the velocity distributions and the jet 
shape, the influence of the condensation at the jet 
surface on the flow field was disregarded. To calculate 
the local velocities at one axial step, the contraction of 
the jet cross-section was determined by extrapolation 
from the values obtained upstream. Thus the algebraic 
set of equations yielded the axial and the radial vel- 
ocities u and v in one cross-section. The radius of 
each axial step was subsequently determined using the 
mean axial velocity and the integral type equation of 
continuity. 

Following the calculation of the velocity profile and 
the jet shape, the energy equation is solved similarly. 
The temperature gradient at the phase interface is used 
to calculate the thickness of the condensate layer along 
the jet. 

5. RESULTS 

5,1. Analytical approach to the.jet shape 
Before the results of the numerical integration are 

presented and discussed, an analytical approach to 
the jet shape will be undertaken. Herein the following 
assumptions should be valid: all quantities are 
invariable with respect to radius; the liquid jet is iso- 
thermal; the axial pressure gradient in the vapour is 
caused by gravity only and there is no interfacial shear 
stress. 

According to these assumptions, the pressure given 
by equation (23) can be considered to be constant 
over the jet cross-section. Substituting Pv =Pvo + Pv9 x 
with constant pressure Pv0 at x = 0 in equation (23) 
leads to the following relation for the pressure gradi- 
ent dp/dx in the liquid jet : 

d~ = Pvg+ dxx r~(l + r/2),/: l+r[2,]) 

(24) 

The above assumptions allow an integration of the 
momentum equation (15) along the jet axis. Regard- 
ing equation (24), the solution reads 

2 +prs(1-~rjZ)  '/2 1 l+r~'2, ] V~x=  g x + C .  

(25) 

In this equation, u denotes the average velocity in a 
jet cross-section at the distance x from the jet origin 
and can be calculated from the equation of continuity, 

r2u = r2ouo (26) 

where r~ is the local jet radius (see Fig. 2). 
For  further considerations it is convenient to con- 

vert equations (25) and (26) into a non-dimensional 
form using the radius r0 and the velocity u0 as charac- 
teristic properties. 

With 

equation (26) yields 

rs = '~tr° I ' 
X = f c r  o 

Equation (25) can now be expressed as 

1 4We (1 ~ " - - ~  

~,4+q,(l+q,'2)"2\ 1+~ '2] 

(27) 

(28) 

8 ~' 1 + - AP.~.+C. (29) 
Re ~ 3 Fr p 

In this equation, We, Re, Fr and ~O are the Weber, the 
Reynolds, the Froude and the contraction number 
according to equations (4)-(6) and (9), respectively. 

A further analytical integration of equation (29) 
seems to be impossible. In order to arrive at a relation 
for the jet radius as a first approximation we assume 
~'  << 1, ~" ~ 0, and Re large enough so that the term 
containing the Reynolds number can be neglected. In 
this case, the integration constant C can be determined 
from equation (29) using the condition 7c = 0, ~ = 1 
as 

C = 1 +4We.  (30) 

Finally, equation (29) takes the approximate form 

1 4We 1 Ap _ 
~ 4 + ~ - ( l + 4 W e )  = F r - - X . p  (31) 

This equation allows the calculation of the jet radius 
(~ = rdro) as a function of the axial position 
(x = x/ro) if the Weber and Froude numbers are con- 
sidered as parameters. With Ap = p, equation (31) 
coincides with equation (3) derived by Scheuermann 
[11] on the base of an energy balance. 

5.2. Numerical results 
5.2.1. Jet shape and velocity profiles. Figure 4 shows 

the shape of a 200 mm long water jet obtained by 
numerical integration of equations (13) and (15). The 
initial (x = 0) jet diameter is 2 ram, and an initial 
jet velocity of 0.3 m s '~ was chosen. The physical 
properties were taken at the saturation temperature. 

As follows from this figure, a significant contraction 
of the jet cross-section takes place in the upper region 
of the jet. Within the first 50 mm the jet diameter 
decreases to nearly half o fits initial value. This implies 
a small convex curvature radius r~ in Fig. 3 so that 
the simplification r~ ~ co made above could lead to 
considerable errors in the numerical solution. For thin 
jets with a large initial velocity, as in the above ex- 
ample, the error does not exceed a few percent because 
the contribution ofr~ to the capillary pressure is small 
in comparison to the contribution of rz. As far as jets 
with larger initial diameters and smaller initial 
velocities are considered, a stronger jet contraction 
is expected which can change the sign of capillary 
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Fig. 4. Jet shape and distribution of axial velocity in a water 
jet. 
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Fig. 5..let shape and distribution of axial velocity in an 
isopropanol jet. 

pressure in the upper region of the jet. This happens 
for example with a water jet of r0 = 2 mm and u0 = 
0.1 m s -  1. However, this effect remains restricted to a 
small jet length because, already, at x = 5 mm the dif- 
ference between the average curvature radius r m and 
the local jet radius q hardly exceeds a few percent. 

Figure 4 also shows the profiles of the axial velocity 
u in cross-sections at x = 50 mm, 100 mm and 150 
mm. On the right-hand side of the figure, the velocity 
values u in m s - '  are indicated. The decrease of the 
velocity towards the jet surface is due to the interfacial 
shear stress, which increases with x. The absolute 
values of the velocity, however, are essentially domi- 
nated by gravity. 

According to numerical results in this paper, the 
radial velocity v decreases from the maximum value 
at the interface almost linearly towards zero on 
approaching the jet axis. Such a distribution of the 
radial velocity also follows from the equation of con- 
tinuity (13), if the derivation 8u/8x is taken to be 
invariable with respect to radius. Compared to the 
axial velocity, the absolute values of the radial velocity 
are negligible. 

As shown in Fig. 5, the shape of an isopropanol jet 
is similar to that of a water jet. However, the profiles 
of the axial velocities are more pronounced for alcohol 
than for water. This can be explained by the differ- 
ences in viscosity, which is 2.5 times larger for alcohol 
than for water in the liquid phase, and about 7.5 times 
larger in the vapour phase. 

Figure 6 compares the jet shapes obtained numeri- 
cally with those calculated analytically according to 
equation (31). Shown in this figure is the difference 
(rJr,id--1), where rs~d is the jet radius according to 
equation (2), vs the non-dimensional jet length 

Apx/(Fr pro). The solid lines represent the numerical, 
the dashed ones the analytical results according to 
equation (31). As can be seen from the figure, there is 
hardly a considerable deviation between the numerical 
and the analytical values using equation (2). The 
largest deviation appears in the region with significant 
changes in the local jet radius and hence can be at- 
tributed to the action of the surface tension a on the 
mean jet velocity. Assuming a decreasing jet radius, a 

rs / rsid - 1 

0.075 0.15 

,P,J l J  
f.7 d I z 

~ I t.~. [ / Isoproponol ~:~'° 40 ~ 2 1 o p r o p  °nol 

60 llil II ! ,o:Zmm 
!1 ii I I I  Uo--O.lm/s 
 !l'J I w :o.rs to 3.0 
! i i !1 1,oo 

130 
Fig. 6. Comparison of numerically obtained jet radii with 
equation (31). Solid lines: numerical values, dashed lines: 

equation (31). 
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larger surface tension leads to a higher flow resistance. 
Thus, the jet radius increases if the mass flow rate 
within the jet is taken to be constant. Moreover, the 
figure indicates a satisfactory agreement between 
numerical and analytical solutions within the entire 
range of parameters. 

The results shown in Fig. 6 are obtained with 
different substances at equal initial values u0 and r0. 
Lower values of u0 and ro lead to higher deviations of 
the actual jet shape from that according to equation 
(2). This is caused by an increased curvature of the 
phase interface for lower values of u0 and r0, leading 
to an increase in resistive action of the surface tension 
and subsequently to a lower mean jet velocity. 

The analytical considerations and the numerical 
calculations allow the conclusion that, within the 
scope of the simplifications made, the jet shape can be 
well determined by the analytical equation (31). Since 
this equation does not  take into account the influence 
of viscosity, its validity is restricted to liquids of low 
viscosity. The axial jet velocity is essentially deter- 
mined by gravity. Along the jet surface, this velocity 
is mainly affected by the interfacial shear stress. 

5.2.2. Heatin 9 of the jet. Figure 7 shows radial tem- 
perature profiles in a water jet with a mass flow rate 
~ / o f 0 . 5  g s - '  taken at several distances x from the 
jet origin. In this figure, the non-dimensional  tem- 
perature 0 given by 

3 - 0 0  
0 - (32) 

3s - 30 

is plotted vs the non-dimensional  jet radius ~ = r/rs. 
The parameters used to perform the calculations can 
be taken from Fig. 7. As shown in this figure, a 
decrease in the temperature gradient at the interface 
(r/rs = 1) as well as an increase in the jet heating with 
the jet length is observed. At approximately x = 50 
ram, the temperature at the jet axis starts to rise. The 
subcooling of the liquid in the jet axis decreases by 
about  a half at x = 200 mm. Radial temperature pro- 
files similar to those in Fig. 7 were also obtained for 
jets of other liquids. 

1.0 Water. g s = l O 0 ° C , - ~ o ~  

2 ?00 _ ,  I / /  i / . /  P 
0.50 . . . . .  , , -  / "  ./ 

,"-, 150 ..I I / /  ../ 
/ "  / "  

' -  0.25 loo . . . - "  . /  
.~.~ / r 0 :Imm 

/ Uo : O,17m/s 
50 . j / -  

0.'50 o. 5  .oo 
Radius T= r/rs 

Fig. 7. Temperature distribution in some jet cross-sections. 

Figure 8 shows the mean temperature Om over a 
cross-section vs the jet length x for several mass flow 
rates. The calculations were based on physical proper- 
ties taken at the saturation temperature: the initial 
subcooling is 5 K in each case. As indicated in the 
figure, only the jet with the lowest mass flow rate 
~¢ = 0.15 g s ~ attains the saturation temperature all 
over the cross-section at a length of approximately 
250 ram. 

As a further example, the mean temperatures of 
isopropanol jets are given in Fig. 9. In this case, the 
increase in temperature is significantly lower com- 
pared to that of  a water jet. This is essentially due to 
the lower thermal conductivity of isopropanol. 

In order to illustrate the effect of  physical properties 
on the jet heating, the calculated mean temperature 
0m of jets of several liquids is plotted in Fig. 10. The 
initial subcooling and the mass flow rate are the same 
for all liquids. All calculations are carried out with 
the physical properties at saturation. As can be seen, 
isopropanol shows a distinctly lower heating com- 
pared to other substances. This is mainly due to the 
low thermal diffusivity of alcohol. However, this 
parameter is certainly not the only one which is 
decisive for the jet heating. The thermal diffusivity of 
water, for example, is about  17% lower compared to 
that of  ammonia :  nevertheless, the heating of water 
is stronger. Obviously, more detailed considerations 
of this subject must take into account further physical 
properties as, for example, the liquid density. This 
parameter decisively determines the mean jet velocity, 
and thus the local jet radius, and, consequently, the 
jet heating. 

Temperature ®m 

X 
¢..- 

¢--. 

L,JU 

Fig. 8. Mean temperature of water jets as a function of jet 
length for different mass flows. (a) ~:/= 0.15 g s -~, 
(b) . ~ = 0 . 5  g s ~, (c) -4;1= 1.0 g s -~, (d) /kJ'= 1.5 g s-' ,  

(e) Jl~/=2.5gs L,(f) /i;/=4.0gs-~. 
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Temperature @m 
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2 5 0 ~  
Fig. 9. Mean temperature of isopropanol jets as a function 
of jet length for different mass flows. (a) h;/= 0.15 g s ~, 
(b) M=0.5  g s_', (c) 1~= 1.0 g s -~, (d) M =  1.5 g s ', 

(e) M = 2 . 5 g s  ' , ( f ) /v I=4 .0gs  ~. 

The numerical results of this paper confirm the facts 
observed by other authors, namely, the perception 
that the initial subcooling is only of  minor influence 
on the mean normalized jet temperature 0m- More- 
over, the heating of the liquid depends strongly on the 
mass flow rate, as expected. Here it is irrelevant, 

whether the mass flow rate is changed by varying the 
initial radius r0 or the initial velocity u0. 

The presented results concerning the jet heating are 
based on the assumptions that the jet  shape is not 
affected by vapour condensation, and that the thick- 
ness of the condensate film at the jet surface is neg- 
ligible compared with the jet radius. As Fig. 11 illus- 
trates, this assumption is permissible. The figure 
shows, as an example, the thickness of the condensate 
film on a water jet. It can be seen that the condensate 
film is hardly thicker than 1.5 % of the initial jet radius, 
although an initial subcooling of 60 K and a jet length 
of 250 mm were assumed. In condensation on  tube 
bundles, under realistic conditions, the subcooling as 
well as the jet length are considerably smaller. There- 
fore, the condensate added to the jet is supposed to 
have a minor influence on the jet shape and the liquid 
side heat transfer. 

6. CORRELATIONS 

With regard to a practical application of the 
numerical results obtained, it is useful to develop a 
suitable correlation for the jet heating. In order to 
derive such a correlation, it is convenient to convert 
the energy equation into a non-dimensional form. 

If the temperature ,9 of the jet is replaced by 0 
according to equation (32) and considering the 
expressions (27), equation (16) can be written as 

~o 1 ~o _2_(± ~ o  i 1 ~o ~ 

(33) 
According to this equation, the jet heating, besides 

femperoture em 
00.0 0;25 0:50 0:75 l.O 

"~".X H20 
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Fig. 10. Mean temperature ofjets of different liquids depend- 

ing on jet length. 
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Fig. 11. Thickness of condensate layer on water jets. 
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the Reynolds and the Prandtl number, depends on the 
contraction number ~k and hence on the parameters 
controlling the hydrodynamics of the jet, namely, the 
Weber and the Froude numbers, see equation (31). 

Although ~, is a function of Re,  Fr and We all 
calculated values of the mean non-dimensional tem- 
perature 0m become almost identical if the product 
Re Pr  x/do is used as a variable. In this case, the values 
of the temperature 0m scatter less than 2% for all 
liquids at all conditions chosen for calculations. 

For  the practical purpose, the numerical values of 
the mean jet temperature 0m can be quite well 
described by 

- - 1 - e x p  - 4 . 8  ~ ]  (34) 

Considering the logarithmic mean temperature 
difference and assuming a constant jet diameter 
d = do, a heat balance for the jet section between x = 0 
and x yields 

~xmd o Re Pr  do 1 
Num - - In (35) 

2 4 x 1 - -  0 m " 

Inserting 0m according to equation (34) in equation 
(35) results in 

This equation implies that the mean Nusselt number 
Num and hence the mean heat transfer coefficient ~m 
decreases as the jet length x increases. Equation (38) 
coincides principally with the L6v~que [33] equation 
for laminar flows. 

7. COMPARISON WITH PREVIOUS STUDIES 

Figure 12 compares the jet heating according to 
equations (10) and (34). Herein, the mean tem- 
perature 0m is plotted vs the non-dimensional jet 
length (4~Re Pr)(x/do).  For low values of this par- 
ameter (0.01-0.04), equation (34) shows lower values 
of 0m. This could be due to the effect of the surface 
tension which reduces the jet velocity. 

Figure 13 shows a comparison of the experimental 
values of Lui et al. [34] with equation (34). In this 
figure, the mean temperature 0m is plotted vs the 
Graetz number Gz = Re Pr  do/x. The experiments 
were carried out with water jets at different initial 
subcoolings (different Jakob numbers). The measure- 
ments indicate, in agreement with the numerical 
results, that the jet heating is only casually affected by 
the Jakob number. Figure 13 shows further that the 
experimental results are below the numerical curve. 
This is partly due to the manner of jet formation. 
Measurements carried out by several authors proved 
that the jet heating also depends on the conditions 
of jet formation. However, the significant deviation 
between experimental and calculated values in this 
case can be explained by the presence of air in the 

0.] 

xl-~0.2 

_.-° 0.3 

0.4 

Temperature em 
0 0.5 

. . . .  eq. (10) 

- -  eq. (34) 

0.5 

1.0 

Fig. 12. Comparison of Kutateladze equation (10) with 
equation (34). 

condensing vapour. As Lui et al. [34] pointed out, the 
percentage of air in the vapour amounted to up to 
0.4%. 

Fig. 14 compares measurements by Celata et al. 

[28] with numerical values of this paper. Herein, the 
normalized temperature 0m is plotted vs the length x 
for mass flow rates .~/of 1.67, 3.33 and 6.67 g s -~. The 
curves presented are calculated according to equation 
(34). As Fig. 14 shows, the agreement is satisfactory 
for low values of x, while there is a distinct deviation 
of the experimental data towards higher values. The 
strong rise in the experimental data between x = 70 
mm and x = 120 mm is particularly striking. This 
could be caused by the formation of axisymmetrica( 
waves and jet vibrations that are frequently observed 
at larger jet lengths. Moreover, a sudden acceleration 
of the jet surface is expected after the liquid left the 

1.0 \wot~~'st~a~(o.~.';°,~i~ 
\ []-Jo = 0.070 

0.~ \ ,,4o :omg 

, 0.4 
E 

O o o  o 

0.2 Experiments of a " o 

Lui et 01.[34] °° 

O O . . . . . . . . . . . . . .  50 100 150 
RePrdo/x 

Fig. 13. Comparison of experimental results of Lui et al. [34] 
with equation (34). 
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nozzle, causing a vortex formation near the phase 
interface, and an increase in heat transfer. 

8. SUMMARY AND CONCLUSIONS 

In this paper, the flow and the heating of viscous 
liquid jets discharged vertically into a region of their 
own vapour were examined numerically. The inves- 
tigations were based upon the laws of conservation 
in differential form, taking into account the surface 
tension as well as the interfacial shear stress. Boundary 
conditions were, among others, a flat velocity and 
temperature profile in the initial segment of the jet. 
The effect of condensation on the jet shape was inves- 
tigated and proved to be negligible. 

Concerning the jet shape, it could be shown, that the 
effect of the surface tension should not  be neglected, 
particularly for jets at low initial velocities, whereas 
the effect of the interfacial shear stress is of minor  
significance in most cases. Furthermore,  equation (1) 
derived by Scheuermann, which can also be derived 
from an analytical solution of the simplified momen-  
tum equation, agrees well with the numerical data of 
this paper. 

The mean jet temperature in a cross-section attains 
saturation temperature only for large jet lengths and 
low mass flow rates. The numerically determined jet 
temperatures can be approximated by a simple cor- 
relation. Based upon this correlation, an equation for 
the mean heat transfer coefficient is recommended. 

The results obtained for the jet heating are com- 
pared with the analytical solution of the energy equa- 
tion given by Kutateladze [13], who assumed a jet 
shape according to equation (2) and a constant  vel- 
ocity in the jet cross-section. Particularly in the range 

0 1.0 
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Fig. 14. Comparison of experimental results of Celata et al. 
[28] with equation (34). 

of long jets, a good agreement is achieved. Further-  
more, the numerical results are also compared with 
measurements taken from literature. The exper- 
imental data of Lui et al. [34] differ from the theor- 
etical values because of the presence of non-  
condensibles in the condensing vapour. In a range of 
small jet lengths, the measurements of Celata et aL 

[28] agree well with our correlation. 
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